INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY ISSN Print: 1560–8530; ISSN Online: 1814–9596 19–0337/2020/23–1–142–148 DOI: 10.17957/IJAB/15.1270 http://www.fspublishers.org

Full Length Article

Application of Fulvic Acid Modulates Photosynthetic Pigments and Malondialdehyde Content in Bread Wheat (*Triticum aestivum* cv. Ekiz) to Increase Resistance to Chromium Stress

Adnan Akcin^{1*}, Tulay Aytas Akcin² and Cengiz Yildirim³

¹Department of Crop and Animal Production, Suluova Vocational School, Amasya University, Suluova, Amasya

²Department of Biology, Faculty of Art and Sciences, Ondokuz Mayıs University, Samsun, Turkey

³*Faculty of Education, Amasya University, Amasya, Turkey*

*For correspondence: adnanakcin@hotmail.com

Received 27 February 2019; Accepted 24 September 2019; Published 08 January 2020

Abstract

This study investigated the effects of fulvic acid (FA) on photosynthetic pigments, carotenoids and malondialdehyde content in bread wheat (cv. Ekiz) under chromium (Cr) stress. Wheat seedlings were divided into two groups except control including 0.10, 0.20, 0.30 and 0.50 mM Cr solution applied and second group included Cr solution and 1.5 mg/L FA at the same concentration. The FA was sprayed to wheat plants. The highest Cr-accumulation was found in the roots compared to other parts of the plant. Chlorophyll *a*, *b*, total chlorophyll and carotenoid contents decreased and this reduction was higher in only Cr treated plants than with FA+Cr. In contrast, the chlorophyll *a*/*b* ratio and malondialdehyde (MDA) content increased depending on the Cr stress. With FA+Cr application, the increase in only Cr-treated plants was higher. The FA application showed positive effects on chlorophyll pigments and carotenoids in preventing Cr stress in wheat seedlings and to reduce the detrimental effects of Cr. © 2020 Friends Science Publishers

Keywords: Carotenoid; Chlorophyll; Heavy metal; Malondialdehyde; Photosynthetic pigment

Introduction

In recent years, rapid industrialization, anthropogenic activities, modern agricultural practices and urbanization has led to an increase in the threshold levels of various heavy metals in soil and aquatic environments. Thus, negative effects are observed on living forms (Sohail et al. 2016; Shahid et al. 2017). Chromium (Cr) is one of the most used heavy metals in industrial activities and the main areas of Cr application are industrial leather processing and finishing, refractory steel production, drilling muds, electroplating cleaning agents, catalytic manufacture and production of chromic acid and specialty chemicals. As a result of industrial activities, Cr compounds released into the environment through solid, liquid and gas wastes showed significant negative biological effects (Shankar et al. 2005). Under Cr and physico-chemical stress, plant development reduced and different structural changes occur according to plant species. These negative conditions affect the nutrient uptake of plants, the roots are damaged and the plants eventually die (Ali et al. 2011a; b; Gill et al. 2015; Ertani et al. 2017).

Chlorophylls are the most important pigment subgroup containing tetrapyrrole and found in chloroplasts of higher plants and of most algae. Chlorophyll a and b are found in

higher plants, ferns, mosses and green algae. Other types of chlorophyll are present in algae and bacteria. Chlorophylls carry out the most important task in the process of photosynthesis (Delgado-Vargas *et al.* 2000).

Likely, carotenoids are the most widespread within pigments produced by photosynthetic and nonphotosynthetic organisms such as higher plants, algae, fungi, bacteria and other animals (Delgado-Vargas *et al.* 2000). Krinsky (1994) reported that carotenoids have a functional role in photosynthetic organisms such as plants. Because these compounds can transfer energy in photosynthesis and photoprotection. It was also determined that this function can protect cells and tissues from cellular damage in plants and microorganisms (Rock 1997).

Lipid peroxidation and malondialdehyde (MDA) causes membrane damage formed by the decomposition of polyunsaturated fatty acids of biomembranes. Heavy metal toxicity is one of the main causes of MDA formation (Weber *et al.* 2004; Sajedi *et al.* 2011; Osuala 2012; King *et al.* 2012). Reactive oxygen species (ROS) are important signal molecules produced as a result of biotic and abiotic stresses. When produced high concentration, it causes disruption of macromolecules such as lipids, proteins and nucleic acids with important functions in the cell. The MDA

To cite this paper: Akcin A, TA Akcin, C Yildirim (2020). Application of fulvic acid modulates photosynthetic pigments and malondialdehyde content in bread wheat (*Triticum aestivum* cv. Ekiz) to increase resistance to chromium stress. *Intl J Agric Biol* 23:142–148

content increases due to lipid peroxidation during oxidative stress (Bailly *et al.* 1996; Kranner *et al.* 2010).

Organic acids are formed by decomposition of plants in soil (Morales *et al.* 2012) which ingenerate from fulvic acid (FA) and humic acid (HA). These organic acids are called as humic substances and constitutes 60 to 70% of total organic matter. FA has a lower molecular weight than HA, however, former has more oxygen and carbon-poor functional groups (Schnitzer and Khan 1972; Weng *et al.* 2006). It is known that FA increases nutrient uptake from soil and resistance to drought in plants. It has shown significant effects in reducing fertilizer usage and stabilizing soil pH (Aiken *et al.* 1985).With the application of FA to the soil by spraying, seed germination is increased. The application of FA to the leaves increased the seedling growth and the root weight of the wheat plants (Katkat *et al.* 2009).

Bread wheat (Triticum aestivum L.) is the best adapted species in the world supplying the energy and protein needs of a significant part of the world's population (Ulukan 2008). Approximately 95% of wheat is produced as bread wheat and grown widely in 67% of crop areas in temperate Mediterranean and subtropical regions all over the world. It is basic foodstuff for 40% of the world's population (Peng et al. 2011). About 50% of the cultivated area is under cereals cultivation and 70% of this is wheat in Turkey. Wheat varieties with different properties are grown widely in Turkey (Güleç et al. 2010). It is also known that wheat plants are more sensitive to Cr stress than other crops (Dey et al. 2009; Hema et al. 2012). With the increase in the world population, wheat requirement is also increasing significantly. To meet this demand, wheat varieties with best tolerance to toxic metals, biotic and abiotic environmental stresses should be cultivated (Ali et al. 2015a).

Therefore, the present study was conducted with objective to identify the effects of FA in root, stem and leaf of *Triticum aestivum* (cv. Ekiz) seedlings against Cr stress application. In addition, effects of FA on photosynthetic pigments and MDA content against stress caused by Cr metal were also determined.

Materials and Methods

Plant materials, experimental design and treatments

In this study, *Triticum aestivum* L. (cv. Ekiz) grown as bread wheat in the province of Amasya was selected as plant material. After germination, wheat seedlings were transferred to plastic pots containing agricultural soil and sand (1:1). The wheat seedlings were grown in a growth chamber with a photoperiod of 16 h light/8 h dark with light intensity of 200 μ mol m⁻² s⁻¹. Apart from the control, wheat seedlings were divided into two groups each applied with 0.10, 0.20, 0.30 and 0.50 mM Cr. Only 1.5 mg/L FA was sprayed to seedlings. Hoagland's nutrient solution was applied to all plants (Ali *et al.* 2015a).

Determination of chromium contents

Harvested wheat plants were washed with distilled water for total Cr accumulation. Wheat plants were dried in an oven at 105° C for 24 h, then the root, stem and leaves were separated. These samples were grinded and kept for Cr analysis. 500 mg (root, stem and leaf) of dried samples were weighed and transferred to pyrex tubes. Dried plant tissues were digested for 65% HNO₃ (7.5 mL) and 36% HCl (2.5 mL) at 25°C for 12 h. Then the samples were heated at 105° C in the incubator for 2 h. Atomic absorption spectroscopy with a Thermo scientific ice 3000 series was used for determination of Cr contents (Novoa-Munoz *et al.* 2008; Lamhamdi *et al.* 2013).

Measurement of photosynthetic pigments

After four weeks of application to wheat seedlings, chlorophyll and carotenoid contents were determined. The uppermost leaves of wheat seedlings were used for pigment contents. 200 mg leaf pieces were homogenized in 96% acetone. The homogenate was measured spectrophotometrically after filtration the Chlorophyll *a*, *b* and carotenoids contents were measured using a UV visible spectrophotometer at 645, 652 and 470 nm wavelengths. The following equations are used for calculations (Lichtenthaler and Wellburn 1983). A solution of 96% acetone was used as a blank.

Chlorophyll $a = (11.75XA_{662}-2.35XA_{645})X20/$ mg fresh leaf weight

Chlorophyll $b = (18.61XA_{645}-3.96XA_{662})X20/mg$ fresh leaf weight

Total chlorophyll= $A_{652}X27.8X20/mg$ fresh leaf weight Total carotenoid=(1000XA₄₇₀-2.27XK1 a-81.4XK1 b/227)X20/ mg fresh leaf weight.

Malondialdehyde (MDA) content determination

The lipid peroxidation was measured by a procedure based on the method of Heath and Packer (1968). 500 mg of fresh leaf pieces were homogenized in 1.5 mL of 5% trichloroacetic acid (TCA). The homogenate was centrifuged at 15000 g for 15 min. 2 mL of the supernatant was then added to 4 mL of 0.5% (w/v) 2-thiobarbituric acid (TBA) in 20% (w/v) TCA). The mixture was heated at 90°C for 30 min, then quickly cooled in an ice-bath and centrifuged at 15000 g for 15 min. Absorbance of the aqueous phase at 450, 532 and 600 nm were measured, respectively. The concentration of MDA was calculated using 155 m M^{-1} cm⁻¹ as the coefficient of absorbance.

Concentration $(\mu \text{mol } L^{-1}) = 6.45 \times (A_{532} - A_{600}) - 0.56 \times A_{450}$

Statistical analysis

All data were subjected to one-way ANOVA and analysis of variance was done by using the statistical package programme SPSS version 10.0. Unless, differences were considered statistically significant when P < 0.05 and checked with Tukey's multiple comparison test. Data presented are the means of three replicates.

Results

Cr Accumulation in root, stem and leaf

Cr were not detected in control plants and 0.10 mM concentration in the root. Cr accumulation increased with increase in Cr concentration in root and its accumulation was higher only in Cr treated plants compared to the plants treated with FA (Fig. 1). In the stem, Cr was not detected in the control and 0.10 mM concentration plants. With the increase in Cr concentration, the accumulation of Cr in the root increased at 0.20, 0.30 and 0.50 mM concentrations and higher accumulation was observed in Cr treated plants compared to the FA treated plants (Fig. 2). In the leaf, no Cr was found in control and at 0.10, 0.20 mM Cr concentrations. In Cr treated plants, its accumulation was higher as compared to plants applied with FA (Fig. 3). According to results, most of Cr was accumulated in the root and stem and leaf similar concentration was found.

Changes in pigment and carotenoid content

Due to the increase in Cr concentration, chlorophyll a content decreased in both FA and Cr treated plants. Chlorophyll a content decreased in plants containing 0.30 and 0.50 mM Cr. The chlorophyll a contents was lower in the Cr treated plants compared with FA treatments (Fig. 4). Chlorophyll b content also decreased in all plants compared to control due to increased Cr concentrations and were lower at the 0.30 and 0.50 mM Cr concentrations. The reduction in chlorophyll bcontent was more reduced in Cr treated plants compared to the plants treated with FA (Fig. 5). Chlorophyll a/bratio increased in all plants compared to the control with low ratio. The highest increase in chlorophyll a/b ratio was observed at 0.50 mM Cr concentration. The increase in only Cr treated plants was higher than FA treated plants (Fig. 6). Total chlorophyll content decreased in all plants compared to the control plants due to the increase in Cr treated plants. Total chlorophyll content at the 0.30 and 0.50 mM Cr concentrations was more less than the other plants. In the only Cr treated plants, the total chlorophyll content was more less in all plants compared to the FA treated plants (Fig. 7).

Total carotenoid content characteristics behaved similar to total chlorophyll content. However, total carotenoid content decreased in plants treated with 0.30 and 0.50 mM Cr. In addition, the total carotenoid content decreased only Cr treated plants compared to the plants treated with FA (Fig. 8).

Fig. 1: Cr concentrations in root of wheat plants exposed to various Cr concentrations with and without applied FA. Bars represent SD of three replicates. Different letters on the bars indicate significant differences among the treatments at P < 0.05

Fig. 2: Cr concentrations in stem of wheat plants exposed to various Cr concentrations with and without applied FA. Bars represent SD of three replicates. Different letters on the bars indicate significant differences among the treatments at P < 0.05

Fig. 3: Cr concentrations in leaf of wheat plants exposed to various Cr concentrations with and without applied FA. Bars represent SD of three replicates. Different letters on the bars indicate significant differences among the treatments at P < 0.05

According to results of the present study, the MDA contents showed response similar to the chlorophyll a/b ratio while MDA content increased with increasing Cr concentrations. The MDA content was higher in only Cr treated plants compared to the plants applied with FA (Fig. 9).

Fig. 4: Chlorophyll a contents of wheat plants exposed to various Cr concentrations with and without applied FA. Bars represent SD of three replicates. Different letters on the bars indicate significant differences among the treatments at P < 0.05

Fig. 5: Chlorophyll b contents of wheat plants exposed to various Cr concentrations with and without applied FA. Bars represent SD of three replicates. Different letters on the bars indicate significant differences among the treatments at P < 0.05

Fig. 6: Chlorophyll a/b contents of wheat plants exposed to various Cr concentrations with and without applied FA. Bars represent SD of three replicates. Different letters on the bars indicate significant differences among the treatments at P < 0.05

Discussion

In this study, Cr was not detected in the roots of the control and 0.10 mM concentration. The accumulation of Cr, in the roots wheat plants was higher than the other parts of plants and was higher in only Cr treated plants compared to FA application (Fig. 1). Some researchers have reported that Cr and Cd more accumulated in the roots of wheat plants

Fig. 7: Total chlorophyll contents of wheat plants exposed to various Cr concentrations with and without applied FA. Bars represent SD of three replicates. Different letters on the bars indicate significant differences among the treatments at P < 0.05

Fig. 8: Total carotenoid contents of wheat plants exposed to various Cr concentrations with and without applied FA. Bars represent SD of three replicates. Different letters on the bars indicate significant differences among the treatments at P < 0.05

Fig. 9: MDA contents of wheat plants exposed to various Cr concentrations with and without applied FA. Bars represent SD of three replicates. Different letters on the bars indicate significant differences among the treatments at P < 0.05

(Subrahmanyam 2008; Ali *et al.* 2015a; b; Akcin *et al.* 2018; Hussain *et al.* 2018). Also depending on the application of Cu, Cd and Cr to wheat plants at increasing concentrations, these metals have accumulated more in the roots of the plants (Rizvi and Khan 2017). Similarly, Liu *et*

al. (2009) determined that the highest accumulation of Cd, Cr, Pb, As and Hg was found in roots, compared to other parts of wheat plants. Furthermore, Cr accumulates along the exodermis cells in the root of the wheat plants increased cortex thickness and led to deterioration of epidermal cells in roots (Akcin *et al.* 2018). With the increase of Cr sequestration in the roots, Cr precipitates in the form insoluble salts (Ali *et al.* 2015b) and Shahid *et al.* (2013) reported this occurrence by immobilizing Cr by other molecules such as cellulose, hemicelluloses, pectins and sugars.

In present study, the pigment contents obtained in FA+Cr and only Cr treated were compared with the control. Total carotenoid, total chlorophyll, chlorophyll a and bcontents decreased compared to the control treatments with Cr. This decrease was higher in FA+Cr treated plants than in only Cr treatments. Heavy metals such as mercury (Hg), copper (Cu) and cadmium (Cd) applied to the bean plant decreased the chlorophyll a concentration compared to the control (Zengin and Munzuroğlu 2005). Depending on the Cr application, the chlorophyll a and b values of wheat and spinach plants were lower than the control (Sharma et al. 1995). In a similar study, Lamhamdi et al. (2013) reported that chlorophyll a, b and total chlorophyll values were lower in wheat and spinach plants after Pb application. In addition, the total chlorophyll content of wheat plants decreased with increasing Cr application (Ali et al. 2015a). The decrease in photosynthetic pigment contents with Cr stress is thought to be due to the increase in chlorophyllase activity leading to the deterioration of chlorophyll (Hegedus et al. 2001; Gill et al. 2015). As a result of heavy metals, ROS may cause a decrease in chlorophyll levels (Ehsan et al. 2014). One of the most sensitive indicators of the toxicity of metals in plants is thought to be the change in total chlorophyll content (Sinha et al. 2005). The carotenoid contents in rice seedlings decreased in Cd, Pb and Cd+Pb applications compared to controls (Srivastava et al. 2014). It has been determined that Cd, Cu and Zn metals in wheat plants are decreased in dose-dependent experiments compared to control (Ciobanu et al. 2017). Moreover, due to metal stress in wheat and other crops, carotenoid contents decreased (Ali et al. 2013; Yadav and Singh 2013). Carotenoids are antioxidant molecules, preventing the formation of ROS and lipid peroxidation (Panda and Coundhury 2005).

In present study findings, although the content of pigments decreased with Cr stress, chlorophyll a/b ratio and MDA content increased compared to the control. However, this increase was more less in the FA+Cr treated plants compared to the only Cr treated plants (Fig. 6 and 9). Chlorophyll a/b ratio increases in plants where chlorophyll b decreased more than chlorophyll a. After application of Cr stress to *Salvinia*, cauliflower and wheat, chlorophyll b significantly more decreased than chlorophyll a (Chatterjee and Chatterjee 2000; Nichols *et al.* 2000). This reduction in the level of chlorophyll b is associated with the deterioration of proteins around the antenna complex (Shankar 2003).

The application of Cd to the wheat plants (cv. Bolal 2973) caused a significant increase in the chlorophyll a/b ratio. However, chlorophyll a/b ratio decreased at high Cd concentrations (Zengin and Munzuroğlu 2005). Öncel et al. (2000) found a reduction in chlorophyll *a/b* ratio at high temperature in wheat (cv. Gerek 79). The MDA content was increased with increasing levels of Cr applied to wheat seedlings compared to the control. The increase in MDA content at 0.30 and 0.50 mM concentrations was more prominent. However, in the plants treated with FA+Cr, the MDA content was less than only Cr treated plants (Fig. 9). MDA content was significantly increased depending on the amount of Cr and the duration of application in wheat plants (Subrahmanyam 2008). Mutlu et al. (2018) stated that MDA content increased after application of Cd stress to wheats (cv. Sönmez 2001 and cv. Quality). Cr metal caused an increase in MDA content in Albares wheat and Pedrezuela barley compared to control (González et al. 2017).

The present study showed that chlorophyll pigment and carotenoid contents were increased with the application of FA in wheat plants under Cr stress (Ali et al. 2015a). These results agree with the findings of Shahid et al. (2012) that a reduction in Pb accumulation with application of FA in V. faba plants. Addition of humic substances to nutrient solution of gerbera plant was reported to improve Zn and Fe uptake by scaps and leaves. In addition, a reduction in Zn and Fe content scaps and leaves at the rate of 1000 mg/L. Due to the adsorption of free Cr ions to FA in living cells, metal concentration decreases and chlorophyll content increases (Nikbakht et al. 2008). The content of FA in leaves may cause an increase in pigment concentration due to the decrease of ROS production (Shahid et al. 2012). In present study, this effect might be due to the reduced Cr concentration in leaves of FA applied plants. It was observed that application of FA significantly reduced the MDA contents in wheat plants under different levels of Cr. This reduction in MDA content by application of FA might be due to improved free radical scavenging (Anjum et al. 2011) and reduced ROS production (Ali et al. 2015a). The another possible explanation might be a reduction in membrane damage due to the adsorption of free radicals with FA (Ali et al. 2018).

Conclusion

The Cr accumulation in the root, stem and leaf was measured depending on the Cr stress applied at increasing concentrations to the wheat plants (cv. Ekiz). The highest Cr accumulation in the wheat plant was determined in the root than other parts. The amount of Cr accumulated in the FA+Cr treated plants was more less than the only Cr treated plants. This result shows the positive importance of FA in preventing Cr accumulation in wheat plants. Cr produces ROS in plants. ROS causes a decrease in chlorophyll pigments and carotenoids. In contrast, the amount of MDA increases as a result of lipid peroxidation. FA, which is a macromolecule, is composed of different groups and shows solubility in water. The chlorophyll pigment contents may have increased due to the absorption of free Cr ions by FA. In addition, the decrease in ROS production caused by FA application may be another factor increasing the pigment concentration. Therefore, FA has positive effects on chlorophyll a, b, total chlorophyll and carotenoids in wheat plants. In addition, FA was reduced the MDA content in wheat plants. FA helps to increase the activity of antioxidant enzymes by preventing the accumulation of metal in the plants. Thus, it supports the growth and development of the plants against to metal stress. In order to maintain the existence of FA in the soil, it is necessary to contend with erosion. Burning stubble in agricultural areas causes the destruction of valuable organic acids such as FA. So, it should formulate appropriate agricultural policies to enhance the importance of FA in country.

References

- Aiken GR, DM McKnight, RL Wershaw, P McCarthy (1985). An introduction to humic substances in soil, sediment and water *In:Humic Substances in Soil, Sediment and Water:Geochemistry*, *İsolation and Characterization*, pp:1–9 Aiken, GR, DM McKnight and RL Wershaw (Eds) Wiley Interscience, Hoboken, New Jersey, USA
- Akcin TA, A Akcin, C Yildirim (2018). Effects of chromium on anatomical characteristics of bread wheat (*Triticum Aestivum* L Cv 'Ekiz'). Intl J Environ Appl Sci 13:27–32
- Ali S, R Muhammad, W Abdul, BH Muhammad, H Afzal, L Shiliang, AA Abdulaziz, H Abeer, FAA Elsayed (2018). Fulvic acid prevents chromium-induced morphological, photosynthetic, and oxidative alterations in wheat irrigated with tannery waste water. J Plant Growth Regul 37:1357–1367
- Ali S, SA Bharwana, M Rizwan, M Farid, S Kanwal, Q Ali, MD Khan (2015a). Fulvic acid mediates chromium (Cr) tolerance in wheat (*Triticum aestivum* L.) through lowering of Cr uptake and improved antioxidant defense system. *Environ Sci Pollut Res* 22:10601–10609
- Ali S, A Chaudhary, M Rizwan, HT Anwar, M Adrees, M Farid, MK Irshad, T Hayat, SA Anjum (2015b). Alleviation of chromium toxicity by glycinebetaine is related to elevated antioxidant enzymes and suppressed chromium uptake and oxidative stress in wheat (*Triticum aestivum* L). *Environ Sci Pollut Res* 22:10669–10678
- Ali S, MA Farooq, MM Jahangir, F Abbas, SA Bharwana, GP Zhang (2013). Effect of chromium and nitrogen form on photosynthesis and anti-oxidative system in barley. *Biol Plantarum* 57:785–791
- Ali S, P Bai, F Zeng, S Cai, IH Shamsi, B Qiu, F Wua, G Zhanga (2011a). The ecotoxicological and interactive effects of chromium and aluminum on growth, oxidative damage and antioxidant enzymes on two barley genotypes differing in Al tolerance. *Environ Exp Bot* 70:185–191
- Ali S, F Zeng, S Cai, B Qiu, GP Zhang (2011b). The interaction of salinity and chromium in the influence of barley growth and oxidative stress. *Plant Soil Environ* 57:153–159
- Anjum SA, L Wang, M Farooq, L Xue, S Ali (2011). Fulvic acid application improves the maize performance under well-watered and drought conditions. *J Agron Crop Sci* 197:409–417
- Bailly C, A Benamar, F Corbineau, D Come (1996). Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging. *Physiol Plantarum* 97:104–110
- Chatterjee J, C Chatterjee (2000). Phytotoxicity of cobalt, chromium and copper in cauliflower. *Environ Pollut* 109:69–74

- Ciobanu G, C Ionescu, M Mateescu (2017). Comparative study on the biochemical and physiological effects of Cd, Cu and Zn in wheat plants. *Ann Univ Craiova Chem Ser* 14:36–45
- Delgado-Vargas F, AR Jiménez, O Paredes-López, FJ Francis (2000). Natural pigments:Carotenoids, anthocyanins, and betalains characteristics, biosynthesis, processing,and stability. *Crit Rev Food Sci Nutr* 40:173–289
- Dey SK, PP Jena, S Kundu (2009). Antioxidative efficiency of *Triticum aestivum* L exposed to chromium stress. J Environ Biol 30:539–544
- Ehsan S, S Ali, S Noureen, K Mehmood, M Farid, W Ishaque, MB Shakoorand, M Rizwan (2014). Citric acid assisted phytoremediation of Cd by *Brassica napus* L. *Ecotoxicol Environ Saf* 106:164–172
- Ertani A, A Mietto, M Borin, S Nardi (2017). Chromium in agricultural soils and crops:a review. *Water Air Soil Pollut* 228:190
- Gill RA, L Zang, B Ali, MA Farooq, P Cui, S Yang, W Zhou (2015). Chromium-induced physio-chemical and ultrastructural changes in four cultivars of *Brassica napus* L. *Chemosphere* 120:154–164
- González A, MM Gil-díaz, PPinilla, MC Lobo (2017). Impact of Cr and Zn on growth, biochemical and physiological parameters, and metal accumulation by wheat and barley plants. *Water Air Soil Pollut* 228:419
- Güleç TE, ÖA Sönmezoğlu, A Yıldırım (2010). Makamalık buğdaylarda kalite ve kaliteyi etkileyen faktörler*Gazios Univ Ziraat Fak Dergisi* 27:113–120
- Heath RL, L Packer (1968). Photoperoxidation in isolated chloroplasts: I kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198
- Hegedus A, S Erdel, G Horvath (2001). Comparative studies of H_2O_2 detoxifying enzymes in green and greening barley seedlings under Cd stress. *Plant Sci* 160:1085–1093
- Hema D, A Altaf, I Muhammad (2012). Characterization of chromium toxicity in food crops and their role in phytoremediation. *J Biorem Biodegrad* 3:159
- Katkat AV, H Çelik, MA Turan, BB Asik (2009). Effects of soil and foliar applications of humic substances on dry weight and mineral nutrients uptake of wheat under calcareous soil conditions. *Aust J Basic Appl Sci* 3:1266–1273.
- King MA, TO Sogbanmu, F Doherty, AA Otitoloju (2012). Toxicological evaluation and usefulness of lipid peroxidation as a biomarker of exposure to crude oil and petroleum products tested against African catfish (*Clarias gariepinus*) and Hermit crab (*Clibanarius africanus*). *Nat Environ Pollut Technol* 11:1–6
- Kranner I, FV Minibayeva, RP Beckett, CE Seal (2010). What is stress? Concepts, definitions and applications in seed science. *New Phytol* 188:655–673
- Krinsky NI (1994). The biological properties of carotenoids. *Pure Appl Chem*, 66:1003–1010
- Lamhamdi M, O El Galiou, A Bakrim, JC Novoa-Munoz, M Arias-Estevez, A Aarab, R Lafont (2013). Effect of lead stress on mineral content and growth of wheat (*Triticum aestivum*) and spinach (*Spinacia oleracea*) seedlings. *Saud J Biol Sci* 20:29–36
- Lichtenthaler H, AR Wellburm (1983). Determination of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. *Biochem Soc Trans* 603:591–593
- Liu WX, JW Liu, MZ Wu, Y Li, Y Zhao, SR Li (2009). Accumulation and translocation of toxic heavy metals in winter wheat (*Triticum* aestivum L.) growing in agricultural soil of Zhengzhou. Chin Bull Environ Contam Toxicol 82:343–347
- Morales J, JA Manso, A Cid, JC Mejuto (2012). Degradation of carbofuran and carbofuran-derivatives in presence of humic substances under basic conditions. *Chemosphere* 89:1267–1271
- Mutlu F, F Yurekli, O Kirecci, F Dengiz (2018). Investigation of antioxidant enzyme activities in wheat (*Triticum aestivum* L) cultivars depending on nitric oxide application under cadmium stress. *Fresen Environ Bull* 27:421–429
- Nichols PB, JD Couch, SH Al-Hamdani (2000). Selected physiological responses of *Salvinia minima* to different chromium concentrations. *Aquat Bot* 68:313–319
- Nikbakht A, M Kafi, M Babalar, YP Xia, A Luo, N Etemadi (2008). Effect of humic acid on plant growth, nutrient uptake, and postharvest life of gerbera. J Plant Nutr 31:2155–2167

- Novoa-Munoz JC, J Simal-Gandara, D Fernandez-Calvino, E Lopez-Periago, M Arias Estevez (2008). Changes in soil properties and in the growth of *Lolium multiflorum* in an acid soil amended with a soil waste from wineries. *Bioresour Technol* 99:6771–6779
- Osuala FI (2012) Metallothionein induction, antioxidant defence systems and haematological indices as biomarkers of heavy metals pollution in *Mus musculus PhD Thesis*, University of Lagos Nigeria
- Öncel I, Y Keleş, AS Üstün (2000). Interactive effects of temperature and heavy metal stress on the growth and some biochemical compounds in wheat seedlings. *Environ Pollut* 107:315–320
- Panda SK, S Choudhury (2005). Chromium stress in plants. Brazil J Plant Physiol 17:95–102
- Peng J, D Sun, E Nevo (2011). Wild emmer wheat, *Triticum dicoccoides*, occupies a pivotal position in wheat domestication process. *Aust J Crop Sci* 5:1127–1143
- Rizvi A, MS Khan (2017). Biotoxic impact of heavy metals on growth, oxidative stress and morphological changes in root structure of wheat (*Triticum aestivum* L.) and stress alleviation by *Pseudomonas* aeruginosa Strain CPSB1. Chemosphere 185:942–952
- Rock CL (1997) Carotenoids:Biology and treatment. *Pharmacol Ther* 75:185–197
- Sajedi N, H Madani, A Naderi (2011). Effect of microelements and selenium on superoxide dismutase enzyme, malondialdehyde activity and grain yield maize (*Zea mays L.*) under water deficit stress. *Not Bot Hortic Agrobot Cluj-Nap* 39:153–159
- Schnitzer M, SU Khan (1972). Humic Substances in the Environment pp:9-23 Dekker Publ New York, USA
- Shahid M, C Dumat, S Khalid, E Schreck, T Xiong, NK Niazi (2017). Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. J Hazard Mater 325:36–58
- Shahid M, E Ferrand, E Schreck, C Dumat (2013). Behavior and impact of zirconium in the soil–plant system:plant uptake and phytotoxicity. *Rev Environ Contam Toxicol* 221:107–127
- Shahid M, C Dumat, J Silvestre, E Pinelli (2012). Effect of fulvic acids on lead-induced oxidative stress to metal sensitive Vicia faba L. Plant Biol Fert Soils 48:689–697

- Shankar AK (2003). Physiological, biochemical and molecular aspects of chromium toxicity and tolerance in selected crops and tree species *PhD Thesis* Tamil Nadu Agricultural University, Coimbatore, India
- Shankar AK, C Cervantes, H Loza-Tavera, S Avudainayagam (2005). Chromium toxicity in plants. *Environ Intl* 1:739–753
- Sharma DC, C Chatterjee, CP Sharma (1995). Chromium accumulation and its effects on wheat *Triticum aestivum* L cv HD2(204) metabolism. *Plant Sci* 111:145–151
- Sinha S, R Saxena, S Singh (2005). Chromium induced lipid peroxidation in the plants of *Pistia stratiotes* L. role of antioxidants and antioxidant enzymes. *Chemosphere* 58:595–604
- Srivastava RK, P Pandey, R Rajpoot, A Rani, RS Dubey (2014). Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings. *Protoplasma* 251:1047–1065
- Sohail, M, MN Khan, AS Chaudhry, NA Qureshi (2016). Bioaccumulation of heavy metals and analysis of mineral element alongside proximate composition in foot, gills and mantle of freshwater mussels (Anodonta anatina). Rend Lincei, 27:687–696
- Subrahmanyam D (2008). Effects of chromium toxicity on leaf photosynthetic characteristics and oxidative changes in wheat (*Triticum aestivum* L.). *Photosynthetica* 46:339–345
- Ulukan H (2008). Effect of soil applied humic acid at different sowing times on some yield components in wheat (*Triticum* spp) hybrids. *Intl J Bot* 4:164–175
- Weber H, A Chetelat, P Reymond, EE Farmer (2004). Selective and powerful stress gene expression in *Arabidopsis* in response to malondialdehyde. *Plant J* 37:877–888
- Weng L, WHV Riemsdijk, LK Koopal, T Hiemstra (2006). Adsorption of humic substances on goethite:comparison between humic acids and fulvic acids. *Environ Sci Technol* 40:7494–7500
- Yadav K, NB Singh (2013). Effects of benzoic acid and cadmium toxicity on wheat seedlings. *Chil J Agric Res*, 73:168–174
- Zengin KF, Ö Munzuroğlu (2005). Fasulye fidelerinin (*Phaseolus vulgaris* LStrike) klorofil ve karotenoid miktarı üzerine bazı ağır metallerin (Ni⁺², Co⁺², Cr⁺³, Zn⁺²) etkileri. *Fırat Üniv Fen Mühend Biliml Derg* 17:164–172